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and/or the extent of branching of
N-linked glycans attached to plasma
fibrinogen, possibly leading to a
bleeding disorder.

Why are proteins glycosylated?
Numerous roles have been assigned

to protein glycosylation. At the level

of the individual protein, glycosylation
is directly related to protein folding,
solubility, stability and activity,
protection from proteases and
subcellular targeting. For instance,

in the ER, the chaperones calnexin

and calreticulin follow the folding

status of nascent polypeptides by
assessing the composition of N-linked
glycans decorating such proteins.
Proper protein glycosylation is also
important for the formation of protein
complexes, for modulating protein-
protein interactions and for the correct
assembly of higher-order protein
structures. At the cellular level, protein
glycosylation is important for both
transient and sustained cell-cell and
cell-matrix recognition events and other
interactions. This is exemplified by the
impact of altered N-glycosylation on the
affinity of antibodies for Fc receptors.
Indeed, the enormous diversity that
exists in terms of glycan composition
and structure lends itself to the high
specificity needed for such interactions.

At the same time, various pathogens
can exploit surface-exposed glycans
to attack target cells, either by
binding to such moieties as part
of a cellular entry strategy, or by
relying on mimicry, whereby host-like
glycans are presented with the aim of
circumventing target cell defenses. In
one striking example of how pathogens
use protein glycosylation for attack,
enteropathogenic Escherichia coli
injects the host cell with an enzyme
that modifies the glycosylation profile
of host defense proteins, thereby
preventing them from acting. Indeed,
bacterial protein glycosylation is
associated with virulence.

Archaea present yet another
physiological role for protein
glycosylation, with a modified
glycosylation profile being seen
in response to changes in the
surroundings, such as changes in
salinity or temperature, a strategy that
may contribute to the ability of members
of this domain to thrive in some of the
most extreme environments on Earth.

Check for

Are there human diseases
associated with improper protein
glycosylation? Congenital disorders
of glycosylation (CDGs) are a series of
conditions in which mutations affect
different components of the protein
glycosylation pathway. For instance,
CDGs caused by mutations in almost
every N-glycosylation pathway

gene have been described. While a
complete loss of N-glycosylation is
lethal, CDG patients can present an
array of clinical symptoms, including
retarded growth, incomplete brain
development, muscle weakness, and
abnormal endocrine and liver function.
The most common of these maladies
is CDG-la, in which the enzyme
phosphomannomutase 2 is affected.
Patients show developmental

and motor deficits, hypotonia,
dysmorphia, failure to thrive,

liver dysfunction, coagulopathy,

and abnormal endocrinology.
Likewise, genetic maladies in which
O-glycosylation is compromised

are also known. In several types of
muscular dystrophy, O-glycosylation
of alpha-dystroglycan, responsible for
binding to the extracellular matrix in
skeletal muscle, is perturbed. Altered
protein glycosylation is, moreover,
considered to be a hallmark of
cancer. In malignant cells, proteins
can present reduced or enhanced
glycan levels, incomplete, shortened
or augmented glycans, and, less
frequently, novel glycans. Indeed,
the protein glycosylation profile of a
cancer cell can change as the disease
progresses, possibly encouraging
tumor growth and invasiveness.

Where can I find out more?
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Originally inspired by neurobiology,
deep neural network models have
become a powerful tool of machine
learning and artificial intelligence.
They can approximate functions and
dynamics by learning from examples.
Here we give a brief introduction to
neural network models and deep
learning for biologists. We introduce
feedforward and recurrent networks
and explain the expressive power

of this modeling framework and the
backpropagation algorithm for setting
the parameters. Finally, we consider
how deep neural network models might
help us understand brain computation.

Neural network models of brain
function

Brain function can be modeled at
many different levels of abstraction. At
one extreme, neuroscientists model
single neurons and their dynamics in
great biological detail. At the other
extreme, cognitive scientists model
brain information processing with
algorithms that make no reference to
biological components. In between
these extremes lies a model class that
has come to be called artificial neural
network.

A biological neuron receives
multiple signals through the synapses
contacting its dendrites and sends
a single stream of action potentials
out through its axon. The conversion
of a complex pattern of inputs into
a simple decision (to spike or not to
spike) suggested to early theorists that
each neuron performs an elementary
cognitive function: it reduces
complexity by categorizing its input
patterns. Inspired by this intuition,
artificial neural network models are
composed of units that combine
multiple inputs and produce a single
output.

The most common type of unit
computes a weighted sum of the inputs
and transforms the result nonlinearly.
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discriminant of its input patterns. A

set of units connected to the same set
of inputs can detect multiple classes,
with each unit implementing a different
linear discriminant. For a network

to discriminate classes that are not
linearly separable in the input signals,
we need an intermediate layer between
input and output units, called a hidden
layer (Figure 1).

If the units were linear — outputting
the weighted sum directly, without
passing it through a nonlinear
activation function — then the output
units reading out the hidden units
would compute weighted sums of
weighted sums and would, thus,
themselves be limited to weighted
sums of the inputs. With nonlinear
activation functions, a hidden layer
makes the network more expressive,
enabling it to approximate nonlinear
functions of the input, as illustrated in
Figure 1.

A feedforward network with a single
hidden layer (Figure 1) is a flexible
approximator of functions that link the
inputs to the desired outputs. Typically,
each hidden unit computes a nonlinear

y = f(W,-f(W;-x))
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Figure 1. Function approximation by a feedforward neural network.

A feedforward neural network with two input units (bottom), three hidden units (middle), and two
output units (top). The input patterns form a two-dimensional space. The hidden and output units
here use a sigmoid (logistic) activation function. Surface plots on the left show the activation of
each unit as a function of the input pattern (horizontal plane spanned by inputs x, and x,). For the
output units, the preactivations are shown below the output activations. For each unit, the weights
(arrow thickness) and signs (black, positive; red, negative) of the incoming connections control
the orientation and slope of the activation function. The output units combine the nonlinear ramps
computed by the hidden units. Given enough hidden units, a network of this type can approximate

any continuous function to arbitrary precision.

The weighted sum can be interpreted
as comparing the pattern of inputs
to a reference pattern of weights,
with the weights corresponding
to the strengths of the incoming
connections. The weighted sum is
called the preactivation. The strength
of the preactivation reflects the overall
strength of the inputs and, more
importantly, the match between the
input pattern and the weight pattern.
For a given input strength (measured
as the sum of squared intensities),
the preactivation will be maximal if
the input pattern exactly matches the
weight pattern (up to a scaling factor).
The preactivation forms the input to
the unit’s nonlinear activation function.
The activation function can be a
threshold function (0 for negative, 1
for positive preactivations), indicating
whether the match is sufficiently
close for the unit to respond. More
typically, the activation function is a
monotonically increasing function, such
as the logistic function (Figure 1) or a
rectifying nonlinearity, which outputs
the preactivation if it is positive and
zero otherwise. These latter activation
functions have non-zero derivatives

(at least over the positive range of
preactivations). As we will see below,
non-zero derivatives make it easier to
optimize the weights of a network.
The weights can be positive or
negative. Inhibition, thus, need not
be relayed through a separate set of
inhibitory units, and neural network
models typically do not respect
Dale’s law (which states that a neuron
performs the same chemical action
at all of its synaptic connections
to other neurons, regardless of the
identity of the target cell). In addition
to the weights of the incoming
connections, each unit has a bias
parameter: the bias is added to the
preactivation, enabling the unit to
shift its nonlinear activation function
horizontally, for example moving the
threshold to the left or right. The bias
can be understood as a weight for
an imaginary additional input that is
constantly 1.

Neural networks are universal
approximators

Units can be assembled into networks
in many different configurations.

A single unit can serve as a linear
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ramp, for example sigmoid or rectified
linear, over the input space. The ramp
rises in the direction in input space that
is defined by the vector of incoming
weights. By adjusting the weights,
we can rotate the ramp in the desired
direction. By scaling the weights
vector, we can squeeze or stretch
the ramp to make it rise more or less
steeply. By adjusting the bias, we can
shift the ramp forward or backward.
Each hidden unit can be independently
adjusted in this way.

One level up, in the output layer, we
can linearly combine the outputs of
the hidden units. As shown in Figure 1,
a weighted sum of several nonlinear
ramps produces a qualitatively different
continuous function over the input
space. This is how a hidden layer
of linear-nonlinear units enables
the approximation of functions very
different in shape from the nonlinear
activation function that provides the
building blocks.

It turns out that we can approximate
any continuous function to any
desired level of precision by allowing
a sufficient number of units in a single
hidden layer. To gain an intuition of why
this is possible, consider the left output
unit (y,) of the network in Figure 1.
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By combining ramps overlapping in

a single region of the input space,

this unit effectively selects a single
compact patch. We could tile the entire
input space with sets of hidden units
that select different patches in this way.
In the output layer, we could then map
each patch to any desired output value.
As we move from one input region to
another, the network would smoothly
transition between the different output
values. The precision of such an
approximation can always be increased
by using more hidden units to tile the
input space more finely.

Deep networks can efficiently
capture complex functions

A feedforward neural network is called
‘deep’ when it has more than one
hidden layer. The term is also used in
a graded sense, in which the depth
denotes the number of layers. We have
seen above that even shallow neural
networks, with a single hidden layer,
are universal function approximators.
What, then, is the advantage of deep
neural networks?

Deep neural networks can re-use
the features computed in a given
hidden layer in higher hidden layers.
This enables a deep neural network
to exploit compositional structure in
a function, and to approximate many
natural functions with fewer weights
and units. Whereas a shallow neural
network must piece together the
function it approximates, like a lookup
table (although the pieces overlap
and sum), a deep neural network can
benefit from its hierarchical structure.
A deeper architecture can increase the
precision with which a function can
be approximated on a fixed budget
of parameters and can improve the
generalization after learning to new
examples.

Deep learning refers to the automatic
determination of parameters deep in
a network on the basis of experience
(data). Neural networks with multiple
hidden layers are an old idea and
were a popular topic in engineering
and cognitive science in the 1980s.
Although the advantages of deep
architectures were understood in
theory, the method did not realize its
potential in practice, mainly because
of insufficient computing power and
data for learning. Shallow machine
learning techniques, such as support

Figure 2. The backpropagation algorithm.

o = [(WHhH s o o'(2)
Errors (partial derivatives of the

cost with respect to the
preactivations in layer I)

ocC
L
0y = WU’
J
al = o(2h)
2 =Wwla

Example: squared-error cost

LS ok (@) - ()|

L o
(Z] ) LETraining

aC/0a} = af — (y(x));

Derivative of cost with
respect to each weight

ac T
=a; -0

oW,

—
Weight of connection to unit j in
layer | from unit k in layer I-1

Current Biology

Backpropagation is an efficient algorithm for computing how small adjustments to the connection
weights affect the cost function that the network is meant to minimize. A feedforward network
with two hidden layers is shown as an example. First, the activations are propagated in the feed-
forward direction (upward). The activation function (gray sigmoid) is shown in each unit (circle).
In the context of a particular input pattern (not shown), the network is in a particular activation
state, indicated by the black dots in the units (horizontal axis: preactivation, vertical axis: activa-
tion). Second, the derivatives of the cost function (squared-error cost shown on the right) are
propagated in reverse (downward). In the context of the present input pattern, the network can
be approximated as a linear network (black lines indicating the slope of the activation function).
The chain rule defines how the cost (the error) is affected by small changes to the activations,
preactivations, and weights. The goal is to compute the partial derivative of the cost with respect
to each weight (bottom right). Each weight is then adjusted in proportion to how much its adjust-
ment reduces the cost. The notation roughly follows Nielsen (2015), but we use bold symbols for

vectors and matrices.

vector machines, worked better in
practice and also lent themselves
to more rigorous mathematical
analysis. The recent success of deep
learning has been driven by a rise in
computing power — in particular the
advent of graphics processing units,
GPUs, specialized hardware for fast
matrix—-matrix multiplication — and
web-scale data sets to learn from.
In addition, improved techniques for
pretraining, initialization, regularization,
and normalization, along with the
introduction of rectified linear units,
have all helped to boost performance.
Recent work has explored a wide
variety of feedforward and recurrent
network architectures, improving the
state-of-the-art in several domains of
artificial intelligence and establishing
deep learning as a central strand of
machine learning in the last few years.
The function that deep neural
networks are trained to approximate is
often a mapping from input patterns to
output patterns, for example classifying
natural images according to categories,
translating sentences from English
to French, or predicting tomorrow’s
weather from today’s measurements.
When the cost minimized by training

is a measure of the mismatch between
the network’s outputs and desired
outputs (that is, the ‘error’), for a
training set of example cases, the
training is called supervised. When the
cost minimized by training does not
involve prespecified desired outputs for
a set of example inputs, the training is
called unsupervised.

Two examples of unsupervised
learning are autoencoders and
generative adversarial networks.
Autoencoder networks learn to
transform input patterns into a
compressed latent representation by
exploiting inherent statistical structure.
Generative adversarial networks
operate in the opposite direction,
transforming random patterns in
a latent representation into novel,
synthetic examples of a category,
such as fake images of bedrooms.
The generator network is trained
concurrently with a discriminator
network that learns to pick out the
generator’s fakes among natural
examples of the category. The two
adversarial networks boost each
other’s performance by posing
increasingly difficult challenges of
counterfeiting and detection to each
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Figure 3. Recurrent neural networks.
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(A) A recurrent neural network model with two input units (in blue box), three hidden units (green
box), and two output units (pink box). The hidden units here are fully recurrently connected: each
sends its output to both other units. The arrows represent scalar weights between particular units.
(B) Equivalent feedforward network. Any recurrent neural network can be unfolded along time as a
feedforward network. To this end, the units of the recurrent neural network (blue, green, pink sets)
are replicated for each time step. The arrows here represent weight matrices between sets of units
in the colored boxes. For the equivalence to hold, the feedforward network has to have a depth
matching the number of time steps that the recurrent network is meant to run for. Unfolding leads
to a representation that is less concise, but easier to understand and often useful in software im-
plementations of recurrent neural networks. Training of the recurrent model by backpropagation
through time is equivalent to training of the unfolded model by backpropagation.

other. Deep neural networks can also
be trained by reinforcement (deep
reinforcement learning), which has led
to impressive performance at playing
games and robotic control.

Deep learning by backpropagation
Say we want to train a deep neural
network model with supervision. How
can the connection weights deep in the
network be automatically learned? The
weights are randomly initialized and
then adjusted in many small steps to
bring the network closer to the desired
behavior. A simple approach would

be to consider random perturbations
of the weights and to apply them

when they improve the behavior. This
evolutionary approach is intuitive and
has recently shown promise, but it is
not usually the most efficient solution.
There may be millions of weights,
spanning a search space of equal
dimension. It takes too long in practice
to find directions to move in such a
space that improve performance. We
could wiggle each weight separately,
and determine if behavior improves.
Although this would enable us to make
progress, adjusting each weight would
require running the entire network many
times to assess its behavior. Again,
progress with this approach is too slow
for many practical applications.

In order to enable more efficient
learning, neural network models are
composed of differentiable operations.
How a small change to a particular
weight affects performance can then
be computed as the partial derivative

of the error with respect to the weight.
For different weights in the same
model, the algebraic expressions
corresponding to their partial
derivatives share many terms, enabling
us to efficiently compute the partial
derivatives for all weights.

For each input, we first propagate the
activation forward through the network,
computing the activation states of all
the units, including the outputs. We
then compare the network’s outputs
with the desired outputs and compute
the cost function to be minimized
(for example, the sum of squared
errors across output units). For each
unit, we then compute how much
the cost would drop if the activation
changed slightly. This is the sensitivity
of the cost to a change of activation
of each output unit. Mathematically,
it is the partial derivative of the cost
with respect to each activation. We
then proceed backwards through
the network propagating the cost
derivatives (sensitivities) from the
activations to the preactivations and
through the weights to the activations
of the layer below. The sensitivity of
the cost to each of these variables
depends on the sensitivities of the
cost to the variables downstream in
the network. Backpropagating the
derivatives through the network by
applying the chain rule provides an
efficient algorithm for computing all the
partial derivatives.

The critical step is computing the
partial derivative of the cost with
respect to each weight. Consider the
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weight of a particular connection (red
arrow in Figure 2). The connection links
a source unit in one layer to a target
unit in the next layer. The influence

of the weight on the cost for a given
input pattern depends on how active
the source unit is. If the source unit

is off for the present input pattern,
then the connection has no signal to
transmit and its weight is irrelevant

to the output the network produces
for the current input. The activation of
the source unit is multiplied with the
weight to determine its contribution
to the preactivation of the target

unit, so the source activation is one
factor determining the influence of the
weight on the cost. The other factor
is the sensitivity of the cost to the
preactivation of the target unit. If the
preactivation of the target unit had no
influence on the cost, then the weight
would have no influence either. The
derivative of the cost with respect to
the weight is the product of its source
unit’s activation and its target unit’s
influence on the cost.

We adjust each weight in the
direction that reduces the cost (the
error) and by an amount proportional to
the derivative of the cost with respect
to the weight. This process is called
gradient descent, because it amounts
to moving in the direction in weight
space in which the cost declines most
steeply. To help our intuition, let us
consider two approaches we might
take. First, consider the approach
of taking a step to reduce the cost
for each individual training example.
Gradient descent will make minimal
and selective adjustments to reduce
the error, which makes sense as we
do not want learning from the current
example to interfere with what we’ve
learned from other examples. However,
our goal is to reduce the overall error,
which is defined as the sum of the
errors across all examples. So second,
consider the approach of summing up
the error surfaces (or, equivalently, the
gradients) across all examples before
taking a step. We can still only take a
small step, because the error surface
is nonlinear and so the gradient will
change as we move away from the
point about which we linearized the
network.

In practice, the best solution is to use
small batches of training examples to
estimate the gradient before taking a



Current Biology

step. Compared to the single-example
approach, this gives us a more stable
sense of direction. Compared to the
full-training-set approach, it greatly
reduces the computations required to
take a step. Although the full-training-
set approach gives exact gradients for
the training-set error, it still does not
enable us to take large steps, because
of the nonlinearity of the error function.
Using batches is a good compromise
between stability of the gradient
estimate and computational cost.
Because the gradient estimate depends
on the random sample of examples in
the current batch, the method is called
stochastic gradient descent (SGD).
Beyond the motivation just given, the
stochasticity is thought to contribute
also to finding solutions that generalize
well beyond the training set.

The cost is not a convex function of
the weights, so we might be concerned
about getting stuck in local minima.
However, the high dimensionality of
weight space turns out to be a blessing
(not a curse) for gradient descent:
there are many directions to escape
in, making it unlikely that we will ever
find ourselves trapped, with the error
surface rising in all directions. In
practice, it is saddle points (where the
gradient vanishes) that pose a greater
challenge than local minima. Moreover,
the cost function typically has many
symmetries, with any given set of
weights having many computationally
equivalent twins (that is, the model
computes the same overall function
for different parameter settings). As a
result, although our solution may be
one local minimum among many, it may
not be a poor local minimum: It may be
one of many similarly good solutions.

Recurrent neural networks are
universal approximators of
dynamical systems

So far we have considered feedforward
networks, whose directed connections
do not form cycles. Units can also be
configured in recurrent neural networks
(RNNs), where activity is propagated

in cycles, as is the case in brains. This
enables a network to recycle its limited
computational resources over time

and perform a deeper sequence of
nonlinear transformations. As a result,
RNNSs can perform more complex
computations than would be possible
with a single feedforward sweep
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Figure 4. Deep convolutional feedforward neural networks.

The general structure of Alexnet, a convolutional deep neural network architecture which had
a critical role in bringing deep neural networks into the spotlight. Unlike the visualization in the
original report on this model, here the tensors’ dimensions are drawn to scale, so it is easier
to appreciate how the convolutional deep neural network gradually transforms the input image
from a spatial to semantic representation. For sake of simplicity, we did not visualize the pool-
ing operations, as well as the splitting of some of these layers between two GPUs. The leftmost
box is the input image (a tensor of the dimensions 227x227x3, where 227 is the length of the
square input-image edges and three is the number of color components). It is transformed by
convolution into the first layer (second box from the left), a tensor with smaller spatial dimensions
(55x55) but a larger number of feature maps (96). Each feature map in this tensor is produced by
a convolution of the original image with a particular 11x11x3 filter. Therefore, the preactivation
of each unit in this layer is a linear combination of one rectangular receptive field in the image.
The boundaries of such a receptive field are visualized as a small box within the image tensor. In
the next, second layer, the representation is even more spatially smaller (27x27) but richer with
respect to the number of feature maps (256). Note that from here and onwards, each feature is
not a linear combination of pixels but a linear combination of the previous layer’s features. The
sixth layer (see the small overview inset at the top-right) combines all feature maps and locations
of the fifth layer to yield 4096 different scalar units, each with its own unrestricted input weights
vector. The final eighth layer has 1000 units, one for each output class. The eight images on the
bottom were produced by gradually modifying random noise images so excite particular units in
each of the eight layers. The rightmost image was optimized to activate the output neuron related
to the class ‘Mosque’. Importantly, these are only local solutions to the activation-maximization
problem. Alternative activation-maximizing images may be produced by using different starting
conditions or optimization heuristics.

through the same number of units and
connections.

For a given state space, a suitable
RNN can map each state to any
desired successor state. RNNs,
therefore, are universal approximators
of dynamical systems. They provide
a universal language for modeling
dynamics, and one whose components
could plausibly be implemented with
biological neurons.

Much like feedforward neural
networks, RNNs can be trained
by backpropagation. However,
backpropagation must proceed through
the cycles in reverse. This process is
called backpropagation through time.
An intuitive way to understand an RNN
and backpropagation through time is
to ‘unfold’ the RNN into an equivalent
feedforward network (Figure 3). Each
layer of the feedforward network
represents a timestep of the RNN.

The units and weights of the RNN

are replicated for each layer of the
feedforward network. The feedforward
network, thus, shares the same set of
weights across its layers (the weights
of the recurrent network).

For tasks that operate on
independent observations (for
example, classifying still images),
the recycling of weights can enable
an RNN to perform better than a
feedforward network with the same
number of parameters. However,
RNNs really shine in tasks that
operate on streams of dependent
observations. Because RNNs can
maintain an internal state (memory)
over time and produce dynamics, they
lend themselves to tasks that require
temporal patterns to be recognized
or generated. These include the
perception speech and video,
cognitive tasks that require maintaining
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representations of hidden states

of the agent (such as goals) or the
environment (such as currently hidden
objects), linguistic tasks like the
translation of text from one language
into another, and control tasks at the
level of planning and selecting actions,
as well as at the level of motor control
during execution of an action under
feedback from the senses.

Deep neural networks provide
abstract process models of
biological neural networks
Cognitive models capture aspects
of brain information processing,

but do not speak to its biological
implementation. Detailed biological
models can capture the dynamics
of action potentials and the
spatiotemporal dynamics of signal
propagation in dendrites and axons.
However, they have only had limited
success in explaining how these
processes contribute to cognition.
Deep neural network models, as
discussed here, strike a balance,
explaining feats of perception,
cognition, and motor control in terms
of networks of units that are highly
abstracted, but could plausibly be
implemented with biological neurons.

For engineers, artificial deep neural
networks are a powerful tool of
machine learning. For neuroscientists,
these models offer a way of specifying
mechanistic hypotheses on how
cognitive functions may be carried
out by brains. Deep neural networks
provide a powerful language for
expressing information-processing
functions. In certain domains, they
already meet or surpass human-level
performance (for example, visual
object recognition and board games)
while relying exclusively on operations
that are biologically plausible.

Neural network models in
engineering have taken inspiration
from brains, far beyond the general
notion that computations involve
a network of units, each of which
nonlinearly combines multiple
inputs to compute a single output.
For example, convolutional neural
networks, the dominant technology in
computer vision, use a deep hierarchy
of retinotopic layers whose units
have restricted receptive fields. The
networks are convolutional in that
weight templates are automatically

shared across image locations
(rendering the computation of a feature
map’s preactivations equivalent

to a convolution of the input with

the weight template). Although the
convolutional aspect may not capture
an innate characteristic of the primate
visual system, it does represent an
idealization of the final product of
development and learning in primates,
where qualitatively similar features are
extracted all over retinotopic maps

at early stages of processing. Across
layers, these networks transform a
visuospatial representation of the
image into a semantic representation
of its contents, successively reducing
the spatial detail of the maps and
increasing the number of semantic
dimensions (Figure 4).

The fact that a neural network
model was inspired by some abstract
features of biology and that it matches
overall human or animal performance
at a task does not make it a good
model of how the human or animal
brain performs the task. However, we
can compare neural network models
to brains in terms of detailed patterns
of behavior, such as errors and
reaction times for particular stimuli.
Moreover, we can compare the internal
representations in neural networks to
those in brains.

In the ‘white-box’ approach, we
evaluate a model by looking at its
internal representations. Neural
network models form the basis for
predicting representations in different
brain regions for a particular set
of stimuli. One approach is called
encoding models. In encoding
models, the brain activity pattern in
some functional region is predicted
using a linear transformation of the
representation in some layer of the
model. In another approach, called
representational similarity analysis,
each representation in brain and model
is characterized by a representational
dissimilarity matrix. Models are
evaluated according to their ability
to explain the representational
dissimilarities across pairs of stimuli. A
third approach is pattern component
modeling, where representations are
characterized by the second moment
of the activity profiles.

Recent results from the domain of
visual object recognition indicate that
deep convolutional neural networks
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are the best available model of how
the primate brain achieves rapid
recognition at a glance, although they
do not explain all of the explainable
variance in neuronal responses.

In the ‘black-box’ approach, we
evaluate a model on the basis of its
behavior. We can reject models for
failing to explain detailed patterns
of behavior. This has already
helped reveal some limitations of
convolutional neural networks, which
appear to behave differently from
humans under noisy conditions and
to show different patterns of failures
across exemplars.

Deep neural networks bridge
the gap between neurobiology and
cognitive function, providing an
exciting framework for modeling brain
information processing. Theories of
how the brain computes can now
be subjected to rigorous tests by
simulation. Our theories, and the
models that implement them, will
evolve as we learn to explain the
rich measurements of brain activity
and behavior provided by modern
technologies in animals and humans.
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